Carbon Thaw Rate Doubles When Accounting for Subsidence in a Permafrost Warming Experiment
نویسندگان
چکیده
منابع مشابه
High biolability of ancient permafrost carbon upon thaw
[1] Ongoing climate warming in the Arctic will thaw permafrost and remobilize substantial terrestrial organic carbon (OC) pools. Around a quarter of northern permafrost OC resides in Siberian Yedoma deposits, the oldest form of permafrost carbon. However, our understanding of the degradation and fate of this ancient OC in coastal and fluvial environments still remains rudimentary. Here, we show...
متن کاملOptimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient.
Permafrost stores approximately 50% of global soil carbon (C) in a frozen form; it is thawing rapidly under climate change, and little is known about viral communities in these soils or their roles in C cycling. In permafrost soils, microorganisms contribute significantly to C cycling, and characterizing them has recently been shown to improve prediction of ecosystem function. In other ecosyste...
متن کاملEstimating the near-surface permafrost-carbon feedback on global warming
Thawing of permafrost and the associated release of carbon constitutes a positive feedback in the climate system, elevating the effect of anthropogenic GHG emissions on global-mean temperatures. Multiple factors have hindered the quantification of this feedback, which was not included in climate carbon-cycle models which participated in recent model intercomparisons (such as the Coupled Carbon ...
متن کاملMoisture drives surface decomposition in thawing tundra
[1] Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a natural permafrost thaw gra...
متن کاملMassive remobilization of permafrost carbon during post-glacial warming
Recent hypotheses, based on atmospheric records and models, suggest that permafrost carbon (PF-C) accumulated during the last glaciation may have been an important source for the atmospheric CO2 rise during post-glacial warming. However, direct physical indications for such PF-C release have so far been absent. Here we use the Laptev Sea (Arctic Ocean) as an archive to investigate PF-C destabil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysical Research: Biogeosciences
سال: 2020
ISSN: 2169-8953,2169-8961
DOI: 10.1029/2019jg005528